User Tools

Site Tools


chapter_11

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
chapter_11 [2024/09/01 17:03] – [Questions and exercises] mikechapter_11 [2025/04/07 20:58] (current) mike
Line 1: Line 1:
-<typo fs:x-large>Chapter 11. Gene circuits and epistasis</typo>+<-chapter_10|Chapter 10^table_of_contents|Table of Contents^chapter_12|Chapter 12-> 
 + 
 +<typo fs:x-large>Chapter 11. %%Gene circuits and epistasis%%</typo>
  
 In [[chapter_10|Chapter 10]], we studied regulatory mechanisms in well-known //E. coli// operons to see how mutations in different elements of the system would behave in dominance tests and cis/trans tests. We also presented the information in reverse - we told you the answer first, then discussed how mutant phenotypes were interpreted.  In [[chapter_10|Chapter 10]], we studied regulatory mechanisms in well-known //E. coli// operons to see how mutations in different elements of the system would behave in dominance tests and cis/trans tests. We also presented the information in reverse - we told you the answer first, then discussed how mutant phenotypes were interpreted. 
Line 15: Line 17:
 </figure> </figure>
  
-Although loss of function mutations in genes for repressors or activators are generally the most common type of regulatory mutation, Table {{ref>Tab1}} will help you to interpret mutations in sites or more complicated mutations in proteins. With mutants in hand, you can potentially clone them by complementation as discussed in [[chapter_09|Chap. 09]]. You can then sequence your clones as discussed in [[chapter_08|Chap. 08]]. This will allow you identify the amino acid sequence of the protein/enzyme that carries out the function of the gene that is mutated in your mutants. This approach of discovering protein/enzyme function based on random mutants with interesting phenotypes is called forward genetics. +Although loss of function mutations in genes for repressors or activators are generally the most common type of regulatory mutation, Table {{ref>Tab1}} will help you to interpret mutations in sites or more complicated mutations in proteins. With mutants in hand, you can potentially clone them by complementation as discussed in [[chapter_09|Chap. 09]]. You can then sequence your clones as discussed in [[chapter_08|Chap. 08]]. This will allow you to  
 +identify the amino acid sequence of the protein/enzyme that carries out the function of the gene that is mutated in your mutants. This approach of discovering protein/enzyme function based on random mutants with interesting phenotypes is called forward genetics. 
  
 <table Tab1> <table Tab1>
chapter_11.1725235431.txt.gz · Last modified: 2024/09/01 17:03 by mike