User Tools

Site Tools


chapter_11

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
chapter_11 [2024/09/01 23:33] mikechapter_11 [2025/04/07 20:58] (current) mike
Line 17: Line 17:
 </figure> </figure>
  
-Although loss of function mutations in genes for repressors or activators are generally the most common type of regulatory mutation, Table {{ref>Tab1}} will help you to interpret mutations in sites or more complicated mutations in proteins. With mutants in hand, you can potentially clone them by complementation as discussed in [[chapter_09|Chap. 09]]. You can then sequence your clones as discussed in [[chapter_08|Chap. 08]]. This will allow you identify the amino acid sequence of the protein/enzyme that carries out the function of the gene that is mutated in your mutants. This approach of discovering protein/enzyme function based on random mutants with interesting phenotypes is called forward genetics. +Although loss of function mutations in genes for repressors or activators are generally the most common type of regulatory mutation, Table {{ref>Tab1}} will help you to interpret mutations in sites or more complicated mutations in proteins. With mutants in hand, you can potentially clone them by complementation as discussed in [[chapter_09|Chap. 09]]. You can then sequence your clones as discussed in [[chapter_08|Chap. 08]]. This will allow you to  
 +identify the amino acid sequence of the protein/enzyme that carries out the function of the gene that is mutated in your mutants. This approach of discovering protein/enzyme function based on random mutants with interesting phenotypes is called forward genetics. 
  
 <table Tab1> <table Tab1>
chapter_11.1725258838.txt.gz · Last modified: 2024/09/01 23:33 by mike